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Abstract

Modern ECUs contain ten thousands of engine parameters that need to be tuned. 
Calibration of all these parameters is time consuming and complex. Simulation on a 
PC could help to  automate and speed up the calibration process,  in  particular  if 
simulation  runs  much  faster  (e.  g.  20  times)  than  real-time.  However,  engine 
calibration is typically performed by an OEM, while the ECU code is owned by the 
supplier  of  the  ECU.  Therefore,  the  OEM  is  typically  unable  to  set  up  a  ECU 
simulation based on the original C code of the ECU. Instead, to set up a simulation, 
time  consuming  and  error  prone  reverse  engineering  is  needed  to  develop  an 
'equivalent model' of the ECU function of interest. To improve this situation, we have 
integrated a chip simulator into the virtual ECU tool Silver. This is used to simulate  
hex files compiled for TriCore targets directly on PC. Simulation requires
1. a hex file that contains program code and parameters of the simulated functions
2. start addresses of the functions to be simulated
3. an  ASAP2/a2l  file  that  defines  the  conversion  rules  for  the  involved  inputs,

outputs, and characteristics, as well as corresponding addresses
The start addresses of functions can e. g. be extracted from a map file generated 
together  with  the hex file.  Silver  uses the a2l  file to  automatically convert  scaled 
integer  values  to  physical  values  and  vice  versa  during  simulation.  A  TriCore 
simulation  can  also  be  exported  as  SFunction  (mexw32  file)  for  use  in 
MATLAB/Simulink. On a standard PC, hex simulation runs with about 40 MIPS. If 
only simulating selected functions of an ECU, this is fast enough to run a simulation 
much faster than real-time. In this paper, we also report how such simulations are 
used today to support the development of gasoline engines at Daimler.

1. Introduction: Virtual ECUs in the development process

Simulation  has  great  potential  to  improve  the  development  process  for  ECUs. 
Simulation  helps  to  move  development  tasks  to  PC,  where  they  often  can  be 
performed faster,  cheaper or better in some respect.  Examples that  illustrate this 
point:

• on a PC, an engineer can easily 'freeze time', i. e. stop simulation and inspect 
the call stack and all variables of a virtual (i. e. simulated) ECU without band 
width limitation and repeat a simulation deterministically as often as needed. 
In contrast, real ECU as used in HiL settings or test rigs must run in real time. 
Stopping and stepping is impossible or requires considerable extra effort, e.g. 
based on the JTAG debug interface.  Exact  reproduction of  experiments  is 
difficult or impossible on a HiL or test rig, due to non-deterministic effects.
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• on a PC,  a calibration  tool  like  INCA (ETAS)  or  CANape (Vector)  can be 
connected to a virtual ECU via XCP to measure into a running simulation and 
to tune characteristics online. This way, many parameters of a ECU can be 
tuned  using  a  relatively  cheap  and  highly  available  PC  platform,  without 
blocking rare and more expensive resources like real prototypes and test rigs.

• A virtual ECU might run on PC 20 times faster than real time. When used in 
combination with test automation, a simple PC gives then 20 time higher test 
throughput than a much more expensive HiL test system.

• On a PC, a development engineer can rebuild the entire ECU within 5 minutes 
after modification of a module, thanks to incremental build, and test drive the 
result in a simulated environment. This helps to detect problems early on the 
developer's PC, and decreases the number of problems that show up late, 
when integrating all modules. As experience shows, such early checks speed 
up development.

Fig 1: Transmission control unit running in Silver (taken from [6])

To exploit these and other benefits when developing an ECU, the ECU must first be 
ported to PC. This is typically done based on the C code of the ECU, which is either  
hand coded, or generated by tools such as Ascet (ETAS), TargetLink (dSPACE) or 
Embedded Coder (MathWorks). For example, QTronic's virtual ECU tool Silver [1] 
provides a framework to 

• compile given ECU tasks for Windows PC,
• emulate the underlying RTOS and other services (CAN, XCP),
• run the resulting virtual ECU closed-loop with a simulated vehicle. 

Typical applications are [2, 6], where a virtual ECU is used to develop the controller 
for an automatic transmission. For closed-loop simulation (shown in Fig. 1), vehicle 
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models  can  be  imported  from  many  simulation  tools  into  Silver,  including 
MATLAB/Simulink, Dymola, SimulationX and MapleSim, e.g. through the FMI format 
for model exchange [4].

However, sometimes C code is not available for implementing a virtual ECU. There 
are two main sources for such a situation:

• Protection of intellectual property: All  or major parts of the ECU have been 
developed by a supplier and the OEM interested in building a virtual ECU (e.g. 
to support calibration, a task typically performed by an OEM) has therefore no 
access to the C code.

• Target-specific C code: C code is available but the C code uses pragmas and 
other  target  or  compiler  specific  constructs,  which  prevents  compilation for 
other targets, such as the Windows x86 platform.

To deal with such situations, we have recently integrated a chip simulator into the 
virtual ECU tool Silver. This way,  a virtual ECU can be build based on a hex file  
compiled for the target processor of the ECU. No access to C code is needed in this  
case. Instead of compiling C code for the Windows x86 platform, the chip simulator 
takes the binary compiled for the target processor and simulates the execution of the 
instructions by the target processor on Windows PC. 

The remaining paper is structured as follows: in section 2, we describe how to use 
this feature to build and run a virtual ECU on PC. In section 3, we report how this is  
currently used by Daimler to support the development of gasoline engines.

2. Chip simulation for TriCore targets

Many automotive controllers are based on processors of Infineon's TriCore family, in 
particular in the power train domain. Examples are engine controllers of the MED and 
EDC family by Bosch and transmission controllers by Continental. Since the initial  
release  of  TriCore  AUDO (AUtomotive  UnifieD-ProcessOr)  in  1999,  Infineon  has 
released four updates of the TriCore architecture, named AUDO NG (e.g. TC1796), 
AUDO Future (e.g. TC1797), AUDO MAX (e.g. TC1798), and AURIS. All members of 
the TriCore family are based on the same instruction set. Individual chips differ in 
memory  maps,  kind  of  memory,  on-chip  devices,  such  as  CAN controllers,  and 
interfaces to external devices. This section describes the support for TriCore chip 
simulation as provided by Silver 2.5.

2.1 Turning a hex file into a virtual ECU

The software of an ECU consists of a real-time operating system (RTOS) that runs 
functions (tasks) at specified times, either initially, periodically or at certain events, 
such as angle positions reached by the crankshaft.  Three kinds of  tasks can be 
distinguished

1. tasks that generate signals, e.g. by reading sensors or CAN messages
2. tasks that compute output signals from input signals
3. tasks that use signals to command actuators or to create CAN messages
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The tasks of categories 1 and 3 typically depend on details of the particular chip, and 
on the ECU hardware. In contrast, tasks of category 2 are fairly independent from 
such hardware-specific details. To simulate ECU code, it is therefore convenient to 
run only tasks of category 2. The required inputs for these tasks can either be taken 
from measurement files (open-loop simulation), or they are computed online by some 
plant model (closed-loop simulation), bypassing the tasks of category 1. Likewise, 
the outputs of category 2 tasks can be directly compared to measurements (open 
loop) or fed into the plant model (closed loop), bypassing the  category 3 tasks. The 
signal  interface between categories 1-2 and 2-3 is typically well  documented and 
available, e.g. from the CAN specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also 
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip  
specific registers, and to build state-machine models for low-level peripherals, such 
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly  
justified by the added value, at least for the applications considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to 
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec 
file into an executable Silver module (dll) or SFunction. A typical spec file looks as 
follows:

01 # specification of sfunction or Silver module 
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map)     # a TASKING or GNU map file
05 frame_file(frame.s)       # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10)  # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08 
09 # functions to be simulated, in order of execution 
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15 
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)

The hash # character starts a comment, which is ignored by Silver. The spec file first 
lists the required files (line 2-5). The map file is optional. If a map file is given, the 
spec file may use symbolic names for functions (such as ABCDE_20ms). Otherwise, 
addresses  (such  as  0x80081cde)  must  be  used.  File  frame.s  (line  5)  contains 
startup code and the generic part of the RTOS emulation used to run the tasks. As 
usual, the startup code sets up stacks, registers, timer and other resources.

Lines 10 - 14 lists the functions to run, and specifies when and in which order to run 
these functions. Silver uses this to generate the application-specific part of the RTOS 
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emulation. For event triggered tasks, Silver offers two alternative event models. Line 
12 shows a function that is executed n times at each Silver step, where n is the value 
of the input variable trigger_ABCDE_syn at the beginning of the step. Typically, n 
is 0 or 1 during simulation. Higher values occur only,  when more than one trigger 
event occurs during one step. Silver also offers a more accurate event model, that  
allows  execution  of  an  event  triggered  task  at  exact  event  time,  not  just  at  the  
beginning of a step.

Finally,  lines  17-19  define  the  inputs,  outputs  and  parameters  of  the  generated 
module  or  SFunction.  In  this  case,  we  just  reuse  the  interface  of  a  FUNCTION 
element  of  the  a2l  file,  for  a  function  called  ABCDE.  It  is  also  possible,  to  list 
individual  variables here  by name,  as long as their  properties (such as address, 
conversion rule, data type) are described in the a2l file. 

In addition, the spec file offers means to specify
• properties  of  the  XCP emulation,  if  any,  to  support  online  calibration  and 

measurement using tools such as INCA and CANape
• data sections to be included into the generated Silver module or SFunction. 

This way, initial loading of the hex file into simulated memory can be avoided, 
to speed up simulation.

• memory areas to be copied to other (faster) memory by the start-up code
• functions to be replaced by other functions. This way, a function called by a 

task of category 1 or 3 to access sensors or actuators can be replaced by a 
function that directly accesses a plant model or measured values instead.

• logging options, e.g. to track memory access during simulation

The  Silver  module  or  SFunction  generated  this  way  performs  exactly  the  same 
computations  on  PC,  as  on  the  real  target,  since  the  effect  of  every  machine 
instruction on memory and chip registers is exactly simulated on PC. However:

• simulation is  just  instruction accurate,  not  cycle  accurate.  This  means,  the 
simulation on PC cannot be used to exactly predict execution time on the real 
target. For example, pipeline effects of different access times to memory (e.g. 
fast on-chip RAM vs. external RAM) are not modelled.

• conceptually,  simulated  tasks  execute  infinitely  fast.  This  means  that  the 
emulated RTOS never interrupts a task. The corresponding effects cannot be 
analysed using the generated model.

• Silicon bugs are not simulated. If a compiler for the real target does not work 
around a silicon bug correctly,  this is likely to be invisible in the simulation: 
simulated  behaviour  and behaviour  on  the  real  target  might  differ  in  such 
cases.

2.2 Debugging the virtual ECU

The spec file used to port selected parts of a hex file to PC might contain bugs. To 
locate bugs, Silver integrates a debugger based on the instruction set simulator tsim, 
developed  by  Infineon.  This  debugger  is  used  whenever  a  simulation  does  not 
perform as expected, i.e. differs from measured behaviour. Silver can be switched to 
step mode. In this mode, Silver uses tsim to run just one TriCore instruction per step, 
allowing  a  user  to  inspect  register  content  before  and  after  execution  of  an 

5



to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

instruction. It is also possible to set code and data breakpoints, for example to pause 
a simulation whenever a certain variable is accessed.

2.3 Running times

In  order  to  measure  the  execution  speed  of  chip  simulation,  we  have  ported  a 
complex ECU function implemented by 5 different C functions that run initially, every 
10 and 200 ms, and synchronous to the crankshaft. The spec file is very similar to  
the one shown in section 2.1. The function has 114 scalar inputs, 102 scalar outputs 
and 108 parameters (characteristics), many of them axes and maps. We have then 
measured all inputs and outputs of the function on an engine test rig for a scenario of 
3.5 minutes and used the resulting measurement (mdf/dat) file to drive simulations in 
Silver,  using either  tsim or  a  generated Silver  module.  Each simulation executed 
380.205256 million instructions (counted by tsim) and has been repeated 5 times on 
a  Windows PC with  Intel  i5  processor  at  2.4  GHz and  2.92  GB RAM.  Average 
execution times found this way are shown in Table 1. 

simulator execution time on PC MIPS
Infineon tsim 919.15 sec   0.41   
Silver module 9.30 sec   40.80   

Table 1: Performance of chip simulation for the BGLWM example

The  ECU  considered  here  (MED17  with  TC1797)  runs  at  200  MHz  and  has  a 
performance of about 300 MIPS. Nevertheless, on the ECU, the execution time for  
the  3.5  minutes  scenario  is  of  course  exactly  3.5  minutes,  due  to  the  real  time 
constraint. On a PC, this function runs 20 times faster.

Fig 2: The BGLWM function running in Silver, driven by measurement file
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2.4 Exporting a simulation to MATLAB/Simulink

Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a 
mexw32 file that runs in Simulink. This is particularly interesting when using chip 
simulation  to  support  automated  optimization  of  parameters,  because  many 
optimization  tools  are  implemented  on  top  of  MATLAB/Simulink.  The  generated 
SFunction accepts all characteristics listed in the spec file as SFunction parameters. 
This  makes  it  easy  to  connect  the  generated  SFunction  with  an  optimization 
procedure. For example, the SFunction can be called with workspace variables that 
are then automatically varied by the optimization procedure between SFunction calls. 
The performance of a generated SFunction is again about 40 MIPS.

3. Applications of chip simulation

In this section, we shortly sketch current applications of the presented approach at  
Daimler. 

3.1 Bypass hooks on Windows PC

During development of an engine controller,  a developer might want to replace a 
certain function of the ECU by its own version of that function, bypassing the original  
function. For real ECUs, this can be done with tools such as EHOOKS (ETAS) or No-
Hooks (ATI).  These tools manipulate the original hex file, such that the bypassed 
function is not executed any more, but just calls the new function instead. The new 
function  is  e.  g.  developed  with  MATLAB/Simulink  in  conjunction  with  a  code 
generator and a compiler for the target processor. This methodology still  requires 
access to the real ECU: the manipulated hex file needs to be flashed into the ECU, 
and the ECU needs to run the new function, such that its behaviour can be assessed.  
In  order  to  further  simplify  the  assessment  of  the  new function,  we  execute  the 
manipulated hex file in Silver on PC using chip simulation as described above. Such 
simulations are typically driven open loop by measurement files (MDF). 

The placing of bypass hooks by direct manipulation of the hex file is a mighty but  
error-prone  tool.  Sometimes  a  hooked  function  is  not  called  at  all  or  only  some 
variables are overwritten and some not. Normally, such errors are only detected after 
the manipulated hex-file was flashed on the ECU and then run on the test bench or in  
a car. With the possibility of instruction accurate simulation of the patched hex file,  
we can detect these errors much faster and without any risk to car or engine.

3.2 Numerical optimization of engine parameters

Modern ECUs contain ten thousands of engine parameters that need to be tuned. 
Calibration  of  all  these  parameters  is  time  consuming  and  complex.  Therefore, 
engine developers all over the world try to automate this task, see for example the 
proceedings of the biannual conference 'Design of Experiments' [3].
We  have  combined  chip  simulation  as  described  above  with  a  procedure  for 
numerical  optimization  to  compute  optimal  values  for  certain  engine  parameters. 
These computations require an accurate and fast model of the engine function of 
interest. In the past, we have used hand-coded models of ECU functions, developed 
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with MATLAB/Simulink. This has been time consuming and error prone. We have 
now  partially  replaced  these  hand-coded  models  with  SFunctions  generated 
automatically by Silver from a given hex file. The generated SFunctions proofed to 
run  as  fast  as  their  hand  coded  counterparts.  The  replacement  of  hand-coded 
floating-point models by generated fix-point SFunctions raises the following problem: 
Some optimization procedures require gradient information to guide the search for 
optimal parameter values. For example, when searching for an x that minimizes f(x), 
the derivative  df/dx is to be computed during optimization for different values of  x. 
Finite differences are often used here, i.e. df/dx is computed as (f(x + h) - f(x)) / h for 
small h, say h = 10-6. If f is computed using chip simulation, x and x+h are often both 
mapped to the same integer, resulting in a zero gradient. As a consequence, the 
optimization procedure is lacking guidance, and might return a suboptimal solution. 
There are also so-called derivative-free procedures for optimization. Obviously, these 
are not affected by the above problem.

4. Conclusions

As demonstrated above, an ECU hex file compiled for some target processor can be 
executed by the virtual ECU tool Silver on Windows PC, either open-loop driven by 
measurements or in closed-loop with a vehicle model. Depending on the application,  
selected ECU functions are simulated, or nearly the entire ECU. 

This kind of simulation opens new possibilities to move development tasks from road, 
test rig or HiL to PCs, where they can be processed faster, cheaper or better in some 
respect, without requiring access to the underlying C code. Daimler currently uses 
this  innovative  simulation  approach  to  support  controls  development  for  gasoline 
engines. Other applications, such as online calibration on PC via XCP seem to be 
doable as well.
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