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Abstract
Since several years Mercedes-Benz integrates simulation and comprehensive tests with a 

high  degree of  automation  in  the  development  process  of  automatic  transmissions.  This 

process has been continuously improved and extended.  Recently also first  suppliers and 

engineering service providers have been integrated in this process. In this paper we present 

the  current  state  of  the  development  process  and  the  corresponding  tool  chain.  As  an 

application example, we use a dual-clutch transmission (DCT) for passenger cars currently 

under development at Mercedes-Benz.

1. Introduction
The  complexity  of  transmission  systems  is  steadily  increasing,  due  to  growing  market 

expectations  regarding  transmission  efficiency,  agility,  and  fun  to  drive.  Mercedes-Benz 

addresses these demands with a growing number of vehicle models and configurations, and 

with  additional  functions of  the transmission systems,  many of  them realized using TCU 

software.  The  corresponding  development  times  are  constantly  shortened,  while 

simultaneously keeping high quality standards.

System development,  and in  particular  system evaluation  and test  with  limited resources 

(time  window  and  costs)  is  therefore  a  great  challenge  for  the  development  teams. 

Conventional  development  and  test  processes  rely  mainly  on  (often  model-based) 

development, hardware-in-the-loop (HiL) tests, and validation and calibration using physical 

prototypes.  Growing complexity  and limited  resources impose an increasing pressure on 

both OEM and suppliers to further improve this process, to make it more reliable and more 

cost-effective.

According to these goals, a few years ago, Mercedes-Benz introduced a rapid integration of 

TCU functions based on software-in-the-loop simulation [1, 2] and comprehensive system 

validation based on automated test generation [6, 3, 4]. In this paper, we present the current 

state  of  this  development  process  and  the  corresponding  tool  chain.  As  an  application 

example,  we  use  a  dual-clutch  transmission  (DCT)  for  passenger  cars  currently  under 

development at Mercedes-Benz.



The DCT development environment integrates the following components (partly shown in 

Fig. 1):

• A multi-domain simulation environment used to build a model of the physical world 

around  the  TCU,  i.e.  transmission  components  and  car  simulation.  We  use  the 

modelling language Modelica [7], and Dymola as a modelling and code generation 

tool for the simulation model.

• MATLAB/Simulink is used for model-based development of the TCU control software.

• TargetLink turns the Simulink model (about 150 modules) into high quality C code for 

two targets: the real TCU and the SiL/Silver platform described below.

• A rapid prototyping environment is used to validate the DCT prototype and the TCU in 

a real vehicle and on HiL.

• Silver  is the tool  for virtual  integration of modules based on SiL simulation.  Silver 

imports  both the transmission and car  model  generated by Dymola  and the TCU 

software  generated  by  TargetLink  as  DLLs  and  runs  them in  a  co-simulation.  In 

addition, Silver provides interfaces to automated system test, the A2L database to 

integrate  calibration  data  into  the  simulation  loop,  and  XCP,  to  support  virtual 

calibration and measurement, much like in a real car.

• CANape is used as measurement and calibration tool in both, the real car and the SiL 

environment.

• TestWeaver [3, 4] automatically generates, runs and assesses tens of thousands of 

different  driving  manoeuvres  for  comprehensive  system  test  during  TCU 

development.

• A HiL setup includes a script-based test automation solution

• Tools to perform static analysis on module and source code level and script-based 

tests on module level.

2. Goals and Motivation
Our development process makes use of rapid system development using SiL-integration and 

systematic test with a high degree of automation. The goals are to improve the development 

speed and costs while keeping and often improving the quality of the resulting products. The 

development process relies on the availability of a simulation model of the power train and a 

SiL integration platform to integrate the TCU control algorithms with the simulated car. Such 

virtual integration platforms have the following advantages:



• Early system validation: With early availability of executable system behavior, system 

behavior  can  be  validated  against  specifications  and  requirements.  This  is  the 

traditional „front-loading“ argument : engineers are able to test, debug and/or optimize 

their own modules in a system context and are not restricted to module tests.

• High availability: Virtual integration platforms and setups are relatively cheap, easily 

available and setups can be replicated exactly with little effort because they run on 

the engineers'  laptops.  This  makes it  possible  to  automatically  generate,  run  and 

assess tens of thousands of simulation runs at virtually no additional cost, producing 

orders of magnitudes of coverage improvement.

• Reproducibility: Once a problem has been identified, it can be shared and reproduced 

efficiently  for  analyses.  SiL  simulations  are  deterministic.  HiL  simulations  are  not 

always deterministic.

• Handling: Virtual integration platforms allow for comfortable analyses and debugging, 

because the  engineer  can:  (a)  view and manipulate  all  internal  variables  (control 

algorithm and car simulation), (b) start/stop/step through time, including the use of 

breakpoints on specific signal properties, (c) attach source-code debuggers such as 

Visual Studio to step through the control code line by line, and (d) deterministically 

reproduce problems encountered earlier.

• Fidelity vs. speed: Without real-time constraints, if needed, power train models can be 

simulated in SiL with higher precision than possible on HiL platforms. Conversely, 

simple simulation models, like those used on HiL, run many times faster than real 

time on conventional PC hardware. This allows engineers to freely trade off the speed 

versus the fidelity of the model according to the project needs.

• Parallelization of work: Synchronisation points in the work flow can cause wait times. 

We have taken great care to avoid synchronisation of work results wherever possible. 

For  example,  each  supplier,  team,  or  even  engineer  can  incrementally  build  the 

complete control software for the SiL platform to include modifications to „his“ local 

module(s) without waiting for a central built.

• IP protection: The SiL/Silver integration platform couples executable models in binary 

form. This allows each participant to share work results without sharing sources and 

proprietary  know-how  –  an  increasingly  important  feature  with  todays  complex 

development structures with multiple suppliers and engineering-service providers.



3. Development Environment
In the following we explain some of the components in more detail.

Figure 1: The Development Environment

3.1 Model-Based Development
For  the  DCT,  a  full  model-based  development  process  was  used,  based  on 

MATLAB/Simulink as modeling environment and the dSPACE TargetLink block set with data 

dictionary  (DD)  and  the  TargetLink  code  generator.  The  DCT  TCU integrates  over  150 

software modules, developed in parallel by several teams, suppliers and engineering-service 

providers. Compiled binary versions of the modules are shared using the PVCS versioning 

tool.  This way every engineer  has access to the results of  all  others, without  sharing IP 

unnecessarily. Additionally, executable system models can be build from the stock of existing 

binaries from other contributers plus the modified modules each engineer improved. Such an 

incremental linking also speeds up the build process from about 2 hours (complete build) 

down to a few minutes. The build tool supports two execution targets: the real TCU with its 

TriCore processor, and the SiL/Silver environment that runs on Windows PC. In effect, every 

developer can build the latest version of the DCT TCU control software within less than three 



minutes and explore the resulting TCU behavior by driving a virtual car via SiL/Silver on its 

laptop. Note: The code running on the laptop is the final code with fix-point arithmetics.

3.2 Reusable Transmission and Car Model with Modelica
Modelica  is  a  vendor-neutral  language  for  modeling  of  physical  systems.  The  Modelica 

language has been developed since 1997 by the non-profit Modelica Association [7]. Due to 

its  multi-domain  concepts,  Modelica  offers  outstanding  support  for  the  modeling  of 

mechatronic systems, such as automatic transmissions.  High quality simulators for Modelica 

are offered by several tool vendors. For the DCT, Dymola was used to build a Modelica 

model of the DCT (without the TCU control software), the entire vehicle (including engine and 

its interactions with the DCT), driver and road. Dymola is also used to generate high quality 

simulation code from the model, to be executed in the SiL environment. In the Mercedes 

power train departments, Modelica transmission and car models have been used for TCU 

development  for  several  years,  e.g for  the 7G-Tronic  transmission  family  [1,2].  Over  the 

years, a Mercedes internal Modelica library of reusable modeling components has been build 

up. In the case of the DCT, this has lead to a significant reduction of the modelling effort, 

because large parts of the car simulation model could be composed from the existing library.

Another  point  worth  discussing  is  related  to  the  model  calibration.  This  is  often  a  time 

consuming step. Model calibration requires measurement data from prototypes and adjusting 

model parameters until a given accuracy (e.g. less than 10% error) is reached. Fortunately, 

TCU software contains more and more adaptation algorithms. The control software adapts to 

the real car using parameter learning algorithms. For the DCT, this was exploited to lower the 

demands for model calibration. Automated adaptation in the SiL is used to adapt the TCU 

software to the simulated car. Of course, this requires to save the adapted parameter values 

(typically stored in EEPROM) to file and to reuse them (by "flashing" the parameters from file 

in the SiL/Silver simulation) at the beginning of each subsequent simulation run.

3.3 Virtual System Integration with SiL/Silver
A SiL platform is used for integrating all TCU software modules (C code with fix-point integer 

variables) with the transmission and car simulation. During DCT development, all developers 

of  the TCU software  have access to this  co-simulation  on their  laptops.  This  allows  the 

engineers to  assess changes to a TCU-module with  respect  to  the effects on the entire 

system within minutes.

As SiL integration platform, Silver [5] has been used. Silver offers a configurable GUI for 

interactive  and  script-based  control  and  analysis  of  simulations.  TCU  functions  and 



simulation modules are bounded to Silver as compiled modules (wrapped as dynamic linked 

libraries, DLL) by a set of export tools. At running time, the compiled modules are cyclically 

executed by Silver in a single process using fixed macro step width. The macro step width 

depends on the sampling rate of the involved ECUs, 5 ms in the case of the DCT TCU. The 

modules exchange signal values at each macro step. Within a macro step, the transmission 

simulation module(s) may use much finer time scales for the numerical integration.

Figure 2: Virtual Integration with Silver

Silver  also  provides  support  for  several  utility  services  and  for  certain  interfaces  and 

standards used for automotive software development (see Figure 2):

• XCP support: Standard calibration tools (such as CANape or INCA) can connect to 

Silver using XCP on TCP/IP for measurement and calibration using the same  setups 

that are used in the real car.

• Emulation of read or write of EEPROM memory: Used to save or read the results of 

calibration and model adaptation as described in 3.2.

• ASAP2 ECU description (A2L): Used by Silver to obtain address information for every 

variable  (CHARACTERISTICs  and  MEASUREMENTs)  of  the  control  software.  In 

effect, every static variable can be plotted or set during simulation.



• Calibration parameters: Silver can read and write calibration data in DCM, PAR or 

HEX format. Values can be written to files or „flashed“ from files into the simulation. 

This way, the scope of system properties that can be tested in SiL is considerably 

broadened.  Often,  problems  can  be  caused  by  faulty  or  inappropriate  calibration 

parameters.

• Python scripting: Simulation can be driven by Python scripts, e.g. for test automation 

or for automating the adaptation of the TCU software to the simulation model.

• Debugging support: Silver supports breakpoints at signal level and also connection 

with external  source-code debuggers,  for instance with Microsoft  Visual  Studio for 

step-by-step module execution.

• Reading and writing of measurements, for instance in MDF or CSV format.

The simulation  can  either  be  driven  interactively  using  the  GUI,  or  it  can  be  driven  by 

measurements, scripts or other tools, e.g. for test automation. The simulation results can be 

plotted, recorded and compared with reference signals. Silver is used by each development 

engineer  for  independent  individual  tests.  The  Silver  simulation  is  also  used  by  the 

comprehensive tests with TestWeaver.

3.4 Rapid Prototyping and HiL
Many development tasks traditionally performed using real hardware (prototypes, test rigs, or 

HiL)  can be performed earlier,  often  with  a  high  degree of  parallelism,  also  on  the  SiL 

platform - leading to shorter development cycles because of all the advantages described in 

section 2. Of course, several system aspects can only be validated using real hardware. 

The DCT development  environment  integrates rapid  prototyping and HiL as follows:  The 

TCU control software offers a special 'slave' mode. When in this mode, the TCU is remote 

controlled  via  CAN  effectively  bypassing  the  control  logic  and  only  using  the  power 

electronics and sensors. This way, the TCU can be controlled from a Windows PC using the 

same TCU software DLL that is used for co-simulation with Silver. For use in HiL, the TCU is 

connected  to  a  PC via  CAN  and  switched  to  slave  mode,  passing  TCU control  to  the 

Windows  PC.  Likewise  for  rapid  prototyping  with  a  real  car,  a  laptop  running  the  TCU 

software DLL is connected to the car using a CAN card, and TCU control is passed to the 

laptop by switching the TCU to 'slave' mode.

3.5 Comprehensive Test with TestWeaver
Test automation is traditionally implemented by running hand-written test scripts on a MiL/SiL 

or HiL platform. Unfortunately, this approach does not scale very well with increasing system 



complexity.  In particular,  automatic transmissions need to be tested in a huge number of 

differing situations: differing shifts, differing engine torque and speed domains, road slope, 

temperature, driver commands, and differing car configurations. For that reason, a few years 

ago,  Mercedes-Benz  started  to  complement  traditional  scripts-based  testing  with  a  new 

method for system validation based on automated test generation [6].

For automated test generation, TestWeaver [3, 4] is used. TestWeaver does not require pre-

fabricated test  scripts.  Instead,  TestWeaver  generates,  runs and evaluates  thousands of 

tests automatically. The tests are not generated randomly, but in a reactive, informed way, 

trying to maximize the coverage of the states reached by the system and to actively worsen 

scenarios that  are already sub-optimal  until  system behavior  violates a requirement.  The 

following kinds of problems can be found:

• low-level coding errors, e.g. division by zero, access violations, integer overflow, pre-

defined range exceeded, index out of bounds,

• algorithmic errors, e.g. state estimation significantly different from values in the model 

for long periods of time, oscillating and non-converging controllers, etc.

• system-level  problems,  e.g.  clutch  overheating,  over-speed  of  engine  and 

transmission components, inadequate fault reaction, engine stalled, etc.

• quality  indicators,  e.g.  worst-case  and  average  measurements  for  shift  durations, 

power losses, and other shift quality indicators.

To test the TCU control  software of the DCT, TestWeaver is connected to the SiL/Silver 

platform. TestWeaver can control  certain system inputs (acceleration pedal,  brake pedal, 

PRND lever, road profile etc.) and can observe certain outputs (states of the TCU control 

software,  key variables  of  the car  simulation)  as shown in  Fig  3.  All  problems found by 

TestWeaver can be recreated in simulation with Silver for detailed analysis and debugging.

Figure 3: System Test with TestWeaver



5. Application to the DCT
The build process for the SiL/Silver target is a modified version of the build process for the 

TriCore processor. Because compiled module versions are stored and shared in the PVCS 

version  management  system,  an  incremental  build  after  only  a  few modules  have  been 

modified takes only a few minutes. As opposed, a complete build takes about two hours.

Also  the  TCU modules  contributed  by  external  suppliers  are  integrated  in  the  SiL/Silver 

target. Thus, all development engineers have a confortable and rapid access to the SiL/Silver 

simulation of the complete system. Thus they can test their own modules and the interaction 

with  the  rest  of  the  system  in  parallel  and  independently  of  each  other.  Suppliers  and 

engineering service providers that co-operate in the project also start to use the SiL/Silver 

platform for integration and tests. Several potential problems are directly shown by Silver, for 

instance: mismatching signal names, violation of the min-max bounds from A2L, unexpected 

system behavior visible by plotting signals, etc.

In addition, extensive tests with TestWeaver are run each week. During a typical test, for 

instance over the weekend, over 2000 test scenarios are automatically generated, classified 

and assessed.  As the project is  still  in a relatively early phase,  we concentrate more on 

software errors and algorithmic errors. But also more and more quality criteria are added to 

the testing goals. Many of these criteria can be reused from the TestWeaver configuration for 

the 7G-Tronic transmission. At the end of a test several coverage and overview reports are 

available  for  showing  what  has  been  tested,  and  what  problems have  been found.  The 

problems found are then assigned to the responsible developers. For the detailed problem 

analysis  and debugging the test  scenarios can be replayed with  Silver,  where  additional 

signals can be plotted, breakpoints can be set, etc.

6. Summary and Outlook
We presented the tool chain and process currently used at Mercedes-Benz to develop the 

control software for a dual-clutch transmission. The work process is centered around a virtual 

integration (SiL) platform, here Silver [5]. This enables us to perform significant validation, 

test and analysis steps earlier than in traditional test development setups and that on highly 

available standard PCs available for each engineer participating in the project. Organising 

processes  around  sharing  object  files  removed  significant  synchronisation  points  in  the 

development process and allows engineers to assess their improved modules in a system 

context.  When problems are found, the SiL platform provides a comfortable analysis and 

debugging environment. The investment in building and maintaining the SiL platform proved 

to be well justified by speed-ups due to shorter development cycles. The presented approach 



to system validation based on automated test generation with TestWeaver [3, 4] proved to be 

particularly useful. Over the entire project, the number of different test cases used to validate 

the system has been increased by 2 or 3 orders of magnitude, without increasing the work 

load for test engineers. On the contrary, we estimate that the effort spent for test setup and 

maintenance is now only a fraction of the effort required for setting up and maintaining the 

script-based approach [1].

The current economic trends continue to put a high pressure on OEM and suppliers to further 

improve  their  development  process,  to  make  it  more  reliable  and  cost  effective.  The 

AUTOSAR standardization of the software architectures [10] will hopefully contribute in this 

direction.  We  expect  and  support  also  more  steps  toward  a  standardisation  of  the 

development tools and processes, including the SiL virtual integration platforms – an effort 

also followed in the Modelisar project [9]. OEM and suppliers will have to work more together 

for achieving these goals.

The  SiL  virtual  integration  complements  in  an  excellent  way  the  HiL  and  the  physical 

prototype integration  and test  efforts.  The SiL  technology  has  matured to a point  where 

development  can  be  supported  even  up  to  pre-calibrating  the  power  train.  This  allows 

significant  time savings in  a flexible  and robust  development process,  across teams and 

companies.
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